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C O N S P E C T U S

Genome-wide studies are providing researchers with a potentially complete
list of the molecular components present in living systems. It is now evi-

dent that several metal ions are essential to life and that metalloproteins, that is,
proteins that require a metal ion to perform their physiological function, are wide-
spread in all organisms. However, there is currently a lack of well-established
experimental methods aimed at analyzing the complete set of metalloproteins
encoded by an organism (the metalloproteome). This information is essential for
a comprehensive understanding of the whole of the processes occurring in living
systems. Predictive tools must thus be applied to define metalloproteomes.

In this Account, we discuss the current progress in the development of bioin-
formatics methods for the prediction, based solely on protein sequences, of met-
alloproteins. With these methods, it is possible to scan entire proteomes for
metalloproteins, such as zinc proteins or copper proteins, which are identified by
the presence of specific metal-binding sites, metal-binding domains, or both. The
predicted metalloproteins can be then analyzed to obtain information on their func-
tion and evolution. For example, the comparative analysis of the content and usage
of different metalloproteins across living organisms can be used to obtain hints
on the evolution of metalloproteomes.

As case studies, we predicted the content of zinc, nonheme iron, and copper-proteins in a representative set of organ-
isms taken from the three domains of life. The zinc proteome represents about 9% of the entire proteome in eukaryotes,
but it ranges from 5% to 6% in prokaryotes, therefore indicating a substantial increase of the number of zinc proteins in
higher organisms. In contrast, the number of nonheme iron proteins is relatively constant in eukaryotes and prokaryotes,
and therefore their relative share diminishes in passing from archaea (about 7%), to bacteria (about 4%), to eukaryotes (about
1%). Copper proteins represent less than 1% of the proteomes in all the organisms studied.

We also discuss the limits of these methods, the approaches used to overcome some of these limits to improve our pre-
dictions, and possible future developments in the field of bioinformatics-based investigation of metalloproteins. As a long-
standing goal of the biological sciences, the understanding of life at the systems level, or systems biology, is experiencing
a rekindling of interest; ready access to complete information on metalloproteomes is crucial to correctly represent the role
of metal ions in living organisms.

Introduction
Life on Earth developed in equilibrium with the

hydrosphere and the lithosphere, taking from

these all the elements necessary for performing

essential functions. As a consequence, a number

of metal ions have been selected during evolu-

tion to take part in many crucial biological pro-

cesses and are thus essential for living organisms.1

In particular, many proteins require metal ions to

carry out their physiological functions.2 We pro-

pose to refer to them as metalloproteins. Up to

now, there was discrimination between metal-

protein complexes and metalloproteins, depend-

ing on the affinity constant. In the present defi-

nition, the designation of metalloproteins is used

for proteins that require a metal ion or metal-con-
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taining cofactor for functional or structural reasons. An anal-

ysis of enzyme mechanisms, restricted to enzymes with

known structure, has shown that about 40% of enzyme-cat-

alyzed reactions involve metal ions.3

Genome sequencing and postgenomic projects have been

providing researchers with a potentially complete list of the

components that are present in organisms and of the relation-

ships between them. Such an unprecedented wealth of infor-

mation has led to the renaissance of a long-standing goal of

biological sciences, namely, the understanding of living organ-

isms at the systems level, or systems biology.4 Systems biol-

ogy aims at describing the behavior of biological systems

based on their molecular constituents, and thus it cannot be

abstracted from the investigation of metals and metallopro-

teins because they are cellular components of crucial impor-

tance. Systems biology approaches require the combination of

large-scale studies to catalogue genome-wide data sets to

obtain as detailed as possible knowledge on the molecules

and their interactions. The investigation of metalloproteins in

this framework, therefore, implies the definition of all the met-

alloproteins encoded by an organism (which constitute its met-

alloproteome) in conjunction with their functional charac-

terization. Bioinformatics methods can give valuable support

to experimental methods in both of these efforts and are espe-

cially important to obtain insights into metalloproteomes

(metal by metal), given the fact that high-throughput experi-

mental technologies for their characterization are not yet rou-

tinely available.5

In this Account, we discuss the development of bioinfor-

matics methods focused on the prediction of metalloproteins,

metal by metal, and we show that they make it possible to

deduce metalloproteomes of living organisms. The analysis of

the content of zinc-, copper-, and iron-binding proteins in rep-

resentative organisms has provided hints to understand sev-

eral properties of these metalloproteins, as well as the usage

of these metal ions within each domain of life and the func-

tions of the corresponding metalloproteins. The same analy-

sis could be extended also to the study of other metal ions.

We also describe current limitations of these methods and

possible future work to improve them. Despite their limita-

tions, bioinformatic approaches represent an important con-

tribution to the overall comprehension of how metal ions are

framed as essential factors in living systems.

Methods for Metalloproteome Prediction
Metalloproteins, as defined in the Introduction, are identified

through biochemical studies that probe the dependence of the

function of the proteins of interest on the presence of metal

ions. This is typically done in vitro on purified native or recom-

binant samples. To obtain details on the properties of the

metal site(s), one needs high-quality samples on which a vari-

ety of analytical and spectroscopic tools are applied or which

are used for a complete protein structure determination.

Therefore, the identification and characterization of a metal-

loprotein is the result of the successful completion of a rela-

tively long series of complex tasks, which often can be quite

challenging. At present, the complexity of and the resource

demands associated with the needed experimental work

make it unfeasible to perform a complete identification of met-

alloproteins at the level of entire metalloproteomes. There-

fore, there is a need to develop methods for the prediction of

metal-binding sites on the basis of the protein sequence only.

To this aim, we proposed to identify metalloproteins by

searching for known metal-binding domains in their

sequences. Lists of metal-binding domains can be extracted

from libraries such as Pfam.6 The detailed procedure is

described in the next paragraph and depicted in Figure 1.7

In domain-based searches, we look for the occurrence of

known metal-binding domains in the protein sequences. A

domain is a structurally and functionally defined protein

region that can be characterized by a multiple sequence align-

ment. This information is typically condensed in a so-called

sequence profile, that is, a table reporting for each position in

the protein sequence the likelihood of the occurrence of any

of the natural amino acids as well as of sequence gaps. Using

FIGURE 1. Schematic representation of the approach for the
detection of metalloproteins in complete proteomes.7,11,12

Bioinformatics of Metalloproteomes Andreini et al.

1472 ACCOUNTS OF CHEMICAL RESEARCH 1471-1479 October 2009 Vol. 42, No. 10



the sequence profiles available in the Pfam library, every pro-

teome in GenBank is analyzed with the search tool HMMER.8

The relevant profiles in Pfam, that is, those corresponding to

metal-binding domains, can be selected by querying the

library for those whose annotation contains the metal name

or symbol and then checking the primary literature to discard

domains erroneously retrieved. In this way, for each metal, we

find an ensemble of proteins that can be called the predicted

metalloproteome. This procedure has been already report-

ed.7 This predicted metalloproteome however suffers from two

limitations. First, a number of proteins may have lost the met-

al-coordinating ligands (i.e., they may lack the amino acids of

the profile that are responsible for binding the metal ion) dur-

ing evolutionary pressure; therefore they cannot be metallo-

proteins unless a new, uncharacterized metal-binding site has

formed concomitantly. From our experience, this error may be

as large as 30% of the ensemble. Second, there are a num-

ber of domains that are not yet recognized as metal-binding

because the annotation of Pfam is largely done manually. This

introduces an error smaller than the first point; this bias can

be estimated as less than 5% of the whole predicted metal-

loproteome. We can substantially reduce the errors due to the

aforementioned reasons by introducing the concept of a met-

al-binding pattern (MBP). The latter may be defined as the

sequence motif found in the structure of the protein from the

PDB responsible for binding the metal cofactor.9 It can be rep-

resented by specifying the metal ligands and their spacing in

the sequence (e.g., HX(3)HX(5)H, three histidine ligands sep-

arated by any three and five residues in the sequence, respec-

tively). For metalloproteins of known three-dimensional

structure, available from the PDB, the program HMMER is used

to recognize the Pfam metal-binding profiles not already anno-

tated as such, recovering the missing 5% mentioned before.

In the future, with the annotation of Pfam becoming more

complete, the weight of this correction will reduce. Instead, in

order to reduce the overestimate due to the inclusion in the

predicted metalloproteome of proteins corresponding to the

profile but lacking the capability of binding metal ions, we

divide the metalloproteome into subgroups, according to

whether the metal-binding profile from which each metallo-

protein was retrieved has at least one representative with

known three-dimensional structure. The relative size of the

two subgroups is typically about 70:30 (with structure/with-

out structure). At this point, we filter off those proteins that do

not have the MBP. The filter is applied by imposing that the

predicted metalloprotein contains all the ligands of the MBP

with spacing in sequence that it is maintained within (20%

(or (1 amino acid for short spacing). The proteins filtered off

are about 30%,7 leading to an improvement of the average

precision of the methodology from about 50% to about 85%.

Precision is defined as the ratio between the number of the

proteins correctly predicted as metalloproteins over the total

number of predicted metalloproteins, that is, is the fraction of

correct predictions. We have not conceived any procedure to

perform an analogous filter for the subgroup for which no

three-dimensional structure is known. However, considering

that the relative amount of these profiles is 30% and that the

overestimate is 30%, the final output is overestimated by 9%.

With time, the number of profiles without structure is going to

decrease, and consequently the overestimate is expected to

decrease.

Even though the procedure described in the previous para-

graph tends to slightly overestimate the number of metallo-

proteins, it may miss some of them when the profile is

particularly short in sequence (less than 40-50 amino acids).

This specific point may be addressed through an alternative

procedure, reported in refs 10-12, based on the PHI-BLAST

program. This procedure is however globally less sensitive

than the previously described protocol. Typically, an additional

5% of metalloproteins can be identified. Finally, completely

unprecedented, uncharacterized metalloproteins can be pre-

dicted by using support vector machines (SVMs),13-16 which

however are generally more error-prone and less compre-

hensive.

A Case Study: Comparative Analysis of Zinc
Proteomes
A search for zinc proteomes in 57 representative organisms

from the three domains of life (40 bacteria, 12 archaea, and

5 eukaryotes) is available in the literature,7 as obtained

through Pfam, the filter for MBPs and the use of the PHI-BLAST

program, as indicated in the previous section. It is shown that

zinc proteins are widespread in living organisms. Within each

domain of life, there exists a good correlation between the

zinc-protein content and the proteome size of the organism

(Figure S1, Supporting Information7). Prokaryotic organisms,

on average, have a lower fraction of zinc proteins (6.0% (
0.2% of the entire proteome in archaea and 4.9% ( 0.1% in

bacteria) than eukaryotic organisms. The zinc proteome in fact

constitutes, on average, 8.8% ( 0.4% of the eukaryotic pro-

teome (about 10% in humans), thus representing a much

more important fraction. Approximately, two-thirds of the

prokaryotic zinc proteins have homologues in eukaryotes,

while the remaining third comprises zinc proteins encoded

only in prokaryotic organisms. On average, three-quarters of

the eukaryotic zinc proteomes comprise proteins encoded
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only in eukaryotes, suggesting that they are relatively more

recent in evolution.7

As shown in Figure 2,7 there is also a functional diversifi-

cation of the eukaryotic and prokaryotic zinc proteomes.

Prokaryotes use zinc proteins to perform enzymatic catalysis,

whereas in eukaryotes the zinc proteome is almost equally

involved in performing catalysis and in regulating DNA tran-

scription. This broad difference in function has a correspon-

dence with the organization of the zinc-binding patterns.

Indeed, the patterns containing four ligands are associated

with structural sites, that is, zinc contributes to the stability of

the protein structure, whereas zinc-binding patterns contain-

ing three protein ligands are associated with catalytic sites,

that is, zinc actively participates in the reaction mechanism of

the enzyme.17 In the latter case, the metal ion most often

completes its first coordination sphere by binding a water mol-

ecule, which participates in the reaction mechanism, or a sub-

strate molecule. The identity of the amino acids in the pattern

is also quite different among structural and catalytic sites. In

humans, 97% of the proteins having a structural zinc site con-

tain at least one cysteine ligand, with 40% having four cys-

teine ligands in their MBP.10 On the other hand, nearly one-

third of the human proteins with a three-ligand MBP have a

pattern with three histidines. Together, four- and three-ligand

patterns account for ca. 96% of all human zinc proteins. It is

useful to compare these results with the data maintained in

other databases. A suitable example is that of the MEROPS

database,18 which contains information on peptidases, includ-

ing metallopeptidases. For zinc peptidases, the agreement is

large: only a few proteins of the latter database are missing

in our outputs because they lack a MBP, as defined by us.

Figure 37 shows that most zinc-dependent enzymes have

homologues in both prokaryotes and eukaryotes. This sug-

gests that zinc has been exploited in the catalytic site of

enzymes before the differentiation of the organisms in the

three domains of life. On the other hand, zinc-binding tran-

scription factors are almost exclusively a prerogative of

eukaryotes (Figures 2 and 3). These transcription factors com-

monly contain zinc-finger domains, which are much rarer in

bacteria and archaea.19 So, whereas zinc enzymes seem to

come from a more ancient zinc proteome, zinc-binding tran-

scription factors seem to have appeared to meet the need of

higher organisms to regulate processes like cell compartmen-

talization and, for multicellular organisms, cell differentiation.

This hypothesis is supported also by the results of the analy-

sis of the MBPs. Transcription factors bind zinc in very similar

metal sites, most often composed by cysteine and histidine

and organized in the same 3D structure.20 Instead, enzymes

use a larger variety of zinc-binding sites. The conservation of

zinc-finger binding sites could be associated with their more

recent origin, whereas the differentiation of the catalytic zinc-

binding sites could be the result of evolutionary processes that

resulted in the development of different enzymatic reactions

targeting different physiological substrates. Indeed, prokary-

FIGURE 2. Distribution of the functions of zinc proteins in
eukaryotes and prokaryotes. The graph includes only the retrieved
proteins with known function, which represent about 90% of the
total.7

FIGURE 3. Fraction of zinc proteins having homologues in both
prokaryotes and eukaryotes or being specific to a superdomain.
The value for enzymes, transcription factors, and proteins
performing other kinds of functions are shown separately.7
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otic zinc proteins without homologues in eukaryotes are most

often specific to only a few bacterial classes and may be the

result of environmental adaptation. In this regard, it is worth

mentioning that the zinc proteome of the 11 hyperthermo-

philic organisms studied constitutes the 7.0% ( 1.1% of the

entire proteome, compared with 6.0% ( 1.0% of 5 thermo-

philic organisms, 5.3% ( 1.0% of 34 mesophilic organisms,

and 4.5% ( 0.2% of 2 psychrophilic organisms.7 This effect

may be due to an increased use of zinc to enhance the struc-

tural stability of proteins by organisms living at higher

temperatures.

Application to Other Transition Metal Ions
The methods described for zinc proteomes can be applied to

the study of all metalloproteins that use transition metal ions,

including less frequent metals like molybdenum and tungsten.

Proteome-level analyses of the occurrence of nonheme iron

proteins have shown that, at variance with what was observed

for zinc, there is no expansion of the nonheme iron proteome

in eukaryotes with respect to prokaryotes.11 Nonheme iron

proteins constitute, on average, 7.1% ( 2.1% of archaeal pro-

teomes, 3.9% ( 1.6% of bacterial proteomes, and only 1.1%

( 0.4% of eukaryotic proteomes. The majority of these pro-

teins have homologues in all three domains of life (about

90% of the total) suggesting that the existing organisms share

the bulk of nonheme iron proteins, which possibly appeared

early in the course of evolution. In this regard, the different

percentages can be explained by the different proteome sizes,

given that the same bulk of proteins is “diluted” in larger

eukaryotic proteomes. The large majority of nonheme iron

sites are found in proteins involved in electron transfer or in

enzymes performing oxidoreductase activity (Figure 4, top11).

Iron is the most used metal ion in redox catalysis, followed by

copper and molybdenum.3 All these metal ions have at least

two oxidation states that can be sufficiently stabilized in pro-

teins (+2, +3, and +4 in the case of iron), so that metal ions

can cycle between them during catalysis. Iron is the metal ion

with the largest variety of sites in proteins, including several

kinds of iron-sulfur clusters and heme cofactors. This may be

due to the necessity to use different chemical environments

to modulate the reduction potential of iron and thus its reac-

tivity. Iron-sulfur clusters are the cofactor of about 40% of the

nonheme iron proteins retrieved, and their binding patterns

are most often composed of cysteine residues. It is worth not-

ing that cysteine is conversely an uncommon ligand for all the

other nonheme iron sites, where histidine is the most wide-

spread ligand.

Copper is the second most common ion in redox cataly-

sis3 and cycles between the +1 and +2 states. Another com-

mon role for copper proteins is in copper homeostasis (Figure

4, bottom).12 Because of the potential toxicity of this ion for

the cell, Nature has evolved complex systems to control the

intracellular concentration of copper.21-23 In these proteins,

copper is most often bound in its +1 state by cysteine resi-

dues. Instead, enzymes feature a larger variety of sites, which

evolved to guarantee sufficient stabilization of both the oxi-

dation states of copper, which have quite different chemical

properties. All these sites use at least one histidine to bind

copper together with other ligands such as cysteine and

methionine or, less commonly, glutamate and aspartate.12

Copper proteins are less pervasive than zinc and nonheme

iron proteins and typically account for less than 1% of an

organism’s proteome. Whereas archaeal and bacterial copper-

proteins most often have homologues in all the domains of

FIGURE 4. Distribution of the function of nonheme iron11 (top) and
copper proteins12 (bottom). The graph includes the retrieved
proteins with known function, which represent about 85% and
90% of the total, respectively.
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life, eukaryotes contain a significant share of eukaryotic-spe-

cific copper proteins. These proteins are mainly copper-depen-

dent oxidoreductases, whose number could be higher than

that in less complex organisms because of the compartmen-

talization of the eukaryotic cell. In agreement with this, a par-

allel expansion of copper ion transporters in eukaryotes is also

observed, albeit less important in numerical terms.

There are several pathways or multiprotein machineries

that interact with metals or metal cofactors transiently, for

example, for the synthesis and assembly of complex cofac-

tors or for their transport from outside or within the cell. Heme

is a notable example in this context, because it requires rela-

tively complex machineries for its biosynthesis, its insertion

into hemoproteins of the c-type, and its uptake from exter-

nal sources. On the other hand, heme-binding patterns are

quite simple. It is possible to apply the methods previously

des-

cribed also to the analysis of complicated systems such as the

above ones by supporting the search for the relevant protein

domains and, when possible, for the corresponding binding

patterns with the investigation of the co-occurrence of the var-

ious genes required for the process under study. In this way,

it is possible to obtain information on the evolution of the pro-

cesses,24 on which organisms are able to perform which pro-

cess, or on the possible existence of uncharacterized enzymes

along the pathways of interest.25 The different solutions devel-

oped by Nature to the same problem can be identified (e.g.,

the variability of heme-binding modes within a common pro-

tein scaffold25). Monoheme cytochromes c occur in all three

domains of life. A soluble cytochrome c and a cytochrome c

domain within the membrane-bound cytochrome bc1 com-

plex are present in the large majority of eukaryotes. The num-

ber and functional diversity of monoheme cytochromes c is

somewhat larger in bacteria, where they are involved in var-

ious respiratory processes as well as in metabolic or biosyn-

thetic processes as electron carriers. On the other hand,

monoheme cytochromes c are rare in archaea, where again

they presumably serve as electron carriers in a limited set of

respiratory processes. Regarding heme biosynthesis and

uptake, it was observed that different systems exist for

prokaryotic organisms belonging to different branches of the

tree of life.25 Some prokaryotes presumably cannot perform

either of the two processes (14%), some can perform only one

of them (40%), and some can perform both of them (46%). A

large share of Gram-positive pathogens do perform heme

uptake from the host, suggesting that this process can be a

potential target for wide-spectrum antibiotics.25

Caveats and Solutions
The bioinformatic approaches developed for the prediction of

metalloproteomes ultimately rely on the data stored in the

PDB, which is the unique source for information on the metal-

binding sites in proteins. As a consequence, our predictions

should improve with the increasing number of metallopro-

teins deposited in the PDB. As of June 2008, 9797 of the

51261 structures deposited in the PDB bind at least one

essential transition metal ion. Based on literature mining and

on the classification of the protein structures in the CATH26

and SCOP27 databases, about 85% (8313) of these interac-

tions are physiologically relevant. Hence, 16% of the PDB

structures are of a protein binding a transition metal ion (Fig-

ure S2-A, Supporting Information). Figure 5A, which was

drawn for this review as described in the Supporting Informa-

tion, shows that the number of structures being deposited in

the PDB every year has been increasing constantly in the last

seven years. This trend reflects both the progress in the exper-

imental techniques to solve macromolecular structures and the

efforts of Structural Genomics projects. The fraction of metal-

loproteins binding a transition metal ion has been constantly

about 16% of all new structures, so their number has also

been steadily increasing. However, the number of new pro-

tein families,27 which typically correspond to an individual

Pfam profile, deposited in the PDB every year has been rap-

idly decreasing since 2004 (Figure 5B), implying that the new

structures are mainly of proteins belonging to families already

structurally characterized. This number does not suffer from

the high redundancy of the PDB and is thus more informa-

tive. Even if less rapidly, also the number of new metallopro-

tein families has been decreasing since 2004. Currently the

PDB contains 3464 distinct families, according to SCOP,27 580

of which include at least one metalloprotein structure (17% of

the total), as shown in Figure S2-B, Supporting Information.

The decreasing rate of discovery of new protein families

implies that the above numbers should remain fairly stable in

time, and thus the results of metalloproteome searches should

also be correspondingly stable. Note that the above consider-

ations apply to soluble, globular proteins. Membrane proteins

or intrinsically unfolded proteins cannot be handled system-

atically at present due to the paucity of experimental data

available for them.

A limitation of the protocols described here is their low

selectivity for the detection of metal-binding sites at the inter-

face of two or more chains. This is due to the simplicity of the

MBPs on each chain, often composed of only two ligands per

chain, making it difficult to remove false positives. Similar con-
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siderations explain the difficulty of predicting metalloproteins

binding nontransition metal ions or metal-binding cofactors,

such as heme. Metal ions that belong to the s- and p-series are

much harder (in the sense of the hard-soft theory) than tran-

sition metal ions. They thus have preferences for oxygen

donors, which can be provided by the protein backbone rather

than side chains, so their MBPs are most often less specific.

Analogously, some proteins bind complex metal-binding

cofactors through nonspecific hydrophobic interactions. There

are some possible ways to tackle this problem. Domain rec-

ognition will work independently of the identity of the metal

ion/metal-binding cofactor required by the metalloprotein, and

thus there is no particular difference in using domain searches

for nontransition rather than transition metal ions. The prob-

lem of domain searches alone is, as mentioned, their rela-

tively low precision. In the case of transition metal ions, this

was circumvented by the use of MBPs as a filter. For those

nontransition metals that are typically bound to at least a pair

of amino acid side chains, such as calcium-binding proteins,

the filter could be modified by using structure prediction meth-

ods to obtain an indication of whether suitable side chains are

close enough to one another in the structure. Alternatively,

one could rely on the introduction of new criteria based on the

properties of the second coordination sphere in addition to or

in place of MBP filtering. This would require that the informa-

tion on the second coordination sphere, which must be

obtained from structures, is translated into sequence motifs.

Concluding Remarks
Metalloproteomics is an increasingly important area of

research within systems biology approaches.5,28 To achieve

biological insights, researchers require a synergistic combina-

tion of data. To this end, the identification of metal cofactors

in a protein can be extremely useful for its functional assign-

ment, as well as to place it in the proper cellular context. In

this Account, we showed how bioinformatics methods can be

applied in searching for metalloproteomes by exploiting the

available knowledge in the PDB and in domain libraries.

There is still significant room for expanding the portfolio of

computational resources of use in metalloproteomics and,

more generally, in biological inorganic chemistry. In this con-

text, a future advancement is the development of databases

dedicated to store functional and structural information on

metal ions in metalloproteins. Despite the copious number of

available databases aimed at providing the scientific commu-

nity with tools for the investigation of biomolecules, very few

of these resources have been dedicated to the analysis of

metal ions in proteins, and the most important of them have

been discontinued.29,30 The lack of this kind of resources con-

tributes to making biological inorganic chemistry a special-

ized area of study, poorly accessible to nonexpert scientists,

and discourages its study. At present, the quality of the results

that can be obtained through computational methods largely

depends on the quality of the manual work spent to select the

starting metallo-data sets (metal-binding domains, metal-bind-

ing structures, and so on). Such work typically relies on liter-

ature analysis, which in some cases may leave a degree of

uncertainty on the actual metal-binding properties of proteins

in vivo. For example, CHCH domains have been reported to

bind copper based on biochemical data, yet the first structur-

ally characterized protein containing this domain did not bind

copper, raising doubts on whether CHCH domains generally

FIGURE 5. Distribution of (A) structures and (B) SCOP27 families
being deposited in the PDB per year over the last 7 years (gray) as
of June 2008. The corresponding numbers for metalloproteins are
reported in black. The gray bars of Figure 5A were built using the
data reported on the PDB Web site (http://www.rcsb.org/pdb/
statistics/contentGrowthChart.do?content)total&seqid)100),
whereas the black bars were obtained on the basis of the release
date of the PDB structures of metalloproteins (the ensemble of
metalloproteins was created as reported in the methods section).
The gray bars of Figure 5B were obtained on the basis of the
release date of new families, as defined in the SCOP database. In
this classification system, families include proteins that are clearly
evolutionarily related; consequently, the pairwise sequence identity
between any pair of proteins within the same family is usually at
least 30%.26 The parseable file in http://scop.mrc-lmb.cam.ac.uk/
scop/parse/dir.cla.scop.txt_1.73 was used to associate PDB
structures with families. The black bars of Figure 5B were built by
applying the same process to the ensemble of metalloproteins.
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bind copper in vivo. Therefore, there is also the need for cre-

ating methods and automated tools for the analysis and clas-

sification of metal-binding sites on the basis of objective

criteria. The combination of these kinds of tools with the

above-mentioned databases could lead to the development of

resources addressing a larger number of proteomes and auto-

matically maintained up to date.

Another area of future work points to the analysis of regula-

tion by metal sensors.31 Metal sensors, indeed, regulate metal-

loprotein expression by binding to DNA promoter regions; these

regions are similar in co-regulated sets of genes. The finding of

the complete set of these DNA recognition sequences could thus

provide the complete set of metallo-regulated operons (metal-

loregulons). The analysis of metalloregulons would lead to the

identification of new metalloproteins, potentially with new metal

binding sites or domains. Significant efforts are also needed to

integrate the metalloproteome analyses with other data sets. As

an example, the integration of metalloproteomics with transcrip-

tomics and interactomics data could be especially useful in the

comprehension of metal ion homeostasis, an area of research of

particular importance given that homeostasis impairment is often

associated with important diseases.32-34

Supporting Information Available. Figure S1 showing the

number of putative zinc-binding proteins as a function of the

proteome size, Figure S2 showing percentages of transition

metal-binding (A) proteins and (B) SCOP27 families in the PDB,

supplementary methods describing how Figure 5 was built,

Table S1 listing Pfam metal-binding domains (zinc, copper,

nonheme iron), Table S2 listing organisms analyzed, Table S3

listing putative bacterial metalloproteins grouped by organ-

ism, Table S4 listing putative archeal metalloproteins grouped

by organism, and Table S5 listing putative eukaryotic metal-

loproteins grouped by organism (the fields of Tables S3-S5

contain (i) NCBI code, (ii) protein length, (iii) brief description

as reported in the proteome release, (iv) potential zinc-bind-

ing pattern(s) in the sequence, and (v) domain composition

(when a domain is followed by a pattern within brackets, the

pattern is localized within the domain)). This material is avail-

able free of charge via the Internet at http://pubs.acs.org.
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